Lanas A, Hunt R. Prevention of anti-inflammatory drug-induced gastrointestinal damage: Benefits and risks of therapeutic strategies. Ann Med. 2006;38:415–428. doi: 10.1080/07853890600925843. [PubMed] [CrossRef] [Google Scholar]
Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA, Adenomatous Polyp Prevention on Vioxx (APPROVe) Trial Investigators Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352:1092–1102. doi: 10.1056/NEJMoa050493. [PubMed] [CrossRef] [Google Scholar]
Laine L, Takeuchi K, Tarnowski A. Gastric muocsal defense and cytoprotection. Bench to Bedside. Gastroenterology. 2008;135:41–60. doi: 10.1053/j.gastro.2008.05.030. [PubMed] [CrossRef] [Google Scholar]
Hernandez-Diaz S, Rodriguez LA. Association between nonsteroidal anti-inflammatory drugs and upper gastrointestinal tract bleeding/perforation: an overview of epidemiologic studies published in the 1990s. Arch Intern Med. 2000;160:2093–2099. doi: 10.1001/archinte.160.14.2093. [PubMed] [CrossRef] [Google Scholar]
Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med. 1999;340:1888–1899. doi: 10.1056/NEJM199906173402407. [PubMed] [CrossRef] [Google Scholar]
Wallace JL, Reuter B, Cicala C, McKnight W, Grisham MB, Cirino G. Novel nonsteroidal anti-inflammatory drug derivatives with with markedly reduced ulcerogenic properties in the rat. Gastroenterology. 1994;107:173–179. [PubMed] [Google Scholar]
Wallace JL, Reuter B, Cicala C, McKnight W, Grisham M, Cirino G. A diclofenac derivative without ulcerogenic properties. Eur J Pharmacol. 1994;257:249–255. doi: 10.1016/0014-2999(94)90136-8. [PubMed] [CrossRef] [Google Scholar]
Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–2012. doi: 10.1056/NEJM199312303292706. [PubMed] [CrossRef] [Google Scholar]
Cho CH. Current roles of nitric oxide in gastrointestinal disorders. J Physiol Paris. 2001;95:253–256. doi: 10.1016/S0928-4257(01)00034-1. [PubMed] [CrossRef] [Google Scholar]
Wallace JL, Miller MJS. Nitric oxide in mucosal defense. A little goes a long-way. Gastroenterology. 2000;119:512–520. doi: 10.1053/gast.2000.9304. [PubMed] [CrossRef] [Google Scholar]
Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 1997;100:2417–2423. doi: 10.1172/JCI119782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Morin MJ, Karr SM, Faris RA, Gruppuso PA. Developmental variability in expression and regulation of inducible nitric oxide synthase in rat intestine. Am J Physiol Gastrointest Liver Physiol. 2001;281:G552–G559. [PubMed] [Google Scholar]
Wallace JL, Tigley AW. New insights into prostaglandins and mucosal defence. Aliment Pharmacol Ther. 1995;9:227–235. [PubMed] [Google Scholar]
Wallace JL. Non-steroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology. 1997;112:1000–1016. doi: 10.1053/gast.1997.v112.pm9041264. [PubMed] [CrossRef] [Google Scholar]
Pique JM, Whittle BJ, Esplugues JV. The vasodilator role of endogenous nitric oxide in the rat gastric microcirculation. Eur J Pharmacol. 1989;174:293–296. doi: 10.1016/0014-2999(89)90324-5. [PubMed] [CrossRef] [Google Scholar]
Calatayud S, Sanz MJ, Canet A, Bello R, de Rojas FD, Esplugues JV. Mechanisms of gastroprotection by transdermal nitroglycerin in the rat. Br J Pharmacol. 1999;127:1111–1118. doi: 10.1038/sj.bjp.0702649. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Allen A, Flemstrom G, Garner A, Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993;73:823–857. [PubMed] [Google Scholar]
Brown JF, Keates AC, Hanson PJ, Whittle BJ. Nitric oxide generators and cGMP stimulate mucus secretion by rat gastric mucosal cells. Am J Physiol. 1993;265:G418–G422. [PubMed] [Google Scholar]
Brown JF, Hanson PJ, Whittle BJ. Nitric oxide donors increase mucus gel thickness in rat stomach. Eur J Pharmacol. 1992;223:103–104. doi: 10.1016/0014-2999(92)90824-N. [PubMed] [CrossRef] [Google Scholar]
Kato S, Kitamura M, Korolkiewicz RP, Takeuchi K. Role of nitric oxide in regulation of gastric acid secretion in rats: effects of NO donors and NO synthase inhibitor. Br J Pharmacol. 1998;123:839–846. doi: 10.1038/sj.bjp.0701691. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Berg A, Redeen S, Grenegard M, Ericson AC, Sjostrand SE. Nitric oxide inhibits gastric acid secretion by increasing intraparietal cell levels of cGMP in isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1061–1066. doi: 10.1152/ajpgi.00230.2005. [PubMed] [CrossRef] [Google Scholar]
Schmassmann A, Zoidl G, Peskar BM, Waser B, Schmassmann-Suhijar D, Gebbers JO, Reubi JC. Role of the different isoforms of cyclooxygenase and nitric oxide synthase during gastric ulcer healing in cyclooxygenase-1 and -2 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2006;290:G747–G756. doi: 10.1152/ajpgi.00416.2005. [PubMed] [CrossRef] [Google Scholar]
Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998;115:182–205. doi: 10.1016/S0016-5085(98)70381-6. [PubMed] [CrossRef] [Google Scholar]
Lauritsen K, Laursen LS, Bukhave K, Rask-Madsen J. Effects of topical 5-aminosalicylic acid and prednisolone on prostaglandin E2 and leukotriene B4 levels determined by equilibrium in vivo dialysis of rectum in relapsing ulcerative colitis. Gastroenterology. 1986;91:837–844. [PubMed] [Google Scholar]
Martin MJ, Jimenez MD, Motilva V. New issues about nitric oxide and its effects on the gastrointestinal tract. Curr Pharm Des. 2001;7:881–908. doi: 10.2174/1381612013397645. [PubMed] [CrossRef] [Google Scholar]
Mannick EE, Bravo LE, Zarama G, Realpe JL, Zhang XJ, Ruiz B, Fontham ETH, Mera R, Miller MJS, Correa P. Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effects of antibiotics and antioxidants. Cancer Res. 1996;56:3238–3243. [PubMed] [Google Scholar]
Souza MH, Lemos HP, Oliveira RB, Cunha FQ. Gastric damage and granulocyte infiltration induced by indomethacin in tumour necrosis factor receptor 1 (TNF-R1) or inducible nitric oxide synthase (iNOS) deficient mice. Gut. 2004;53:791–796. doi: 10.1136/gut.2002.012930. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Elliott SN, McKnight W, Cirino G, Wallace JL. A nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology. 1995;109:524–530. doi: 10.1016/0016-5085(95)90341-0. [PubMed] [CrossRef] [Google Scholar]
Gurbuz V, Alican I, Berrak , Yegen C, Bozkurt A, Oktar B, Haklar G, Yuksel M, Kurtel H. Role of nitric oxide in indomethacin-induced gastric mucosal dysfunction in the rat. Exp Physiol. 1999;84:319–332. doi: 10.1017/S095806709901800X. [PubMed] [CrossRef] [Google Scholar]
Lamarque D, Whittle BJ. Role of oxygen-derived metabolites in the rat gastric mucosal injury induced by nitric oxide donors. Eur J Pharmacol. 1995;277:187–194. doi: 10.1016/0014-2999(95)00075-V. [PubMed] [CrossRef] [Google Scholar]
Santos CL, Souza MH, Gomes AS, Lemos HP, Santos AA, Cunha FQ, Wallace JL. Sildenafil prevents indomethacin-induced gastropathy in rats: role of leukocyte adherence and gastric blood flow. Br J Pharmacol. 2005;146:481–486. doi: 10.1038/sj.bjp.0706361. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Lanas A, Panes J, Pique JM. Clinical implications of COX-1 and/or COX-2 inhibition for the distal gastrointestinal tract. Curr Pharm Des. 2003;9:2253–2266. doi: 10.2174/1381612033453992. [PubMed] [CrossRef] [Google Scholar]
Whittle BJ, Laszlo F, Evans SM, Moncada S. Induction of nitric oxide synthase and microvascular injury in the rat jejunum provoked by indomethacin. Br J Pharmacol. 1995;116:2286–2290. [PMC free article] [PubMed] [Google Scholar]
Boughton-Smith NK, Evans SM, Laszlo F, Whittle BJ, Moncada S. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat. Br J Pharmacol. 1993;110:1189–1195. [PMC free article] [PubMed] [Google Scholar]
Takeuchi K, Yokota A, Tanaka A, Takahira Y. Factors involved in upregulation of inducible nitric oxide synthase in rat small intestine following administration of nonsteroidal anti-inflammatory drugs. Dig Dis Sci. 2006;51:1250–1259. doi: 10.1007/s10620-006-8045-4. [PubMed] [CrossRef] [Google Scholar]
Takeuchi K, Hatazawa R, Tanigami M, Tanaka A, Ohno R, Yokota A. Role of endogenous nitric oxide (NO) and NO synthases in healing of indomethacin-induced intestinal ulcers in rats. Life Sci. 2007;80:329–336. doi: 10.1016/j.lfs.2006.09.016. [PubMed] [CrossRef] [Google Scholar]
Ohno R, Yokota A, Tanaka A, Takeuchi K. Induction of small intestinal damage in rats following combined treatment with cyclooxygenase-2 and nitric-oxide synthase inhibitors. J Pharmacol Exp Ther. 2004;310:821–827. doi: 10.1124/jpet.104.065961. [PubMed] [CrossRef] [Google Scholar]
Wallace JL. Nitric oxide, aspirin-triggered lipoxins and NO-aspirin in gastric protection. Inflamm Allergy Drug Targets. 2006;5:133–137. doi: 10.2174/187152806776383116. [PubMed] [CrossRef] [Google Scholar]
Jansson EA, Petersson J, Reinders C, Sobko T, Bjorne H, Phillipson M, Weitzberg E, Holm L, Lundberg JO. Protection from non-steroidal anti-inflammatory drug (NSAID)-induced gastric ulcers by dietary nitrate. Free Radic Biol Med. 2007;42:510–518. doi: 10.1016/j.freeradbiomed.2006.11.018. [PubMed] [CrossRef] [Google Scholar]
Petersson J, Phillipson M, Jansson EA, Patzak A, Lundberg JO, Holm L. Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol. 2007;292:G718–G724. doi: 10.1152/ajpgi.00435.2006. [PubMed] [CrossRef] [Google Scholar]
Lanas A, Bajador E, Serrano P, Fuentes J, Carreno S, Guardia J, Sanz M, Montoro M, Sainz R. Nitrovasodilators, low-dose aspirin, other nonsteroidal antiinflammatory drugs, and the risk of upper gastrointestinal bleeding. N Engl J Med. 2000;343:834–839. doi: 10.1056/NEJM200009213431202. [PubMed] [CrossRef] [Google Scholar]
Lanas A, García-Rodríguez LA, Arroyo MT, Bujanda L, Gomollón F, Forné M, Aleman S, Nicolas D, Feu F, González-Pérez A, Borda A, Castro M, Poveda MJ, Arenas J, Investigators of the Asociación Española de Gastroenterología (AEG) Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory drugs, antiplatelet agents, and anticoagulants. Am J Gastroenterol. 2007;102:507–515. doi: 10.1111/j.1572-0241.2006.01062.x. [PubMed] [CrossRef] [Google Scholar]
Piazuelo E, Fuentes J, Garcfa-Gonzalez MA, Jimenez P, Lanas A. A case-control study of the association between polymorphisms of the endothelial nitric oxide synthase and glycoprotein IIIa genes and upper gastrointestinal bleeding in users of low-dose aspirin. Clin Ther. 2008;30:121–130. doi: 10.1016/j.clinthera.2008.01.020. [PubMed] [CrossRef] [Google Scholar]
Reuter BK, Cirino G, Wallace JL. Markedly reduced intestinal toxicity of a diclofenac derivative. Life Sci. 1994;55:PL1–PL8. doi: 10.1016/0024-3205(94)90083-3. [PubMed] [CrossRef] [Google Scholar]
Cuzzolin L, Conforti A, Adami A, Lussignoli S, Memestrina F, Del Soldato P, Benoni G. Anti-inflammatory potency and gastrointestinal toxicity of a new compound, NO-naproxen. Pharmacol Res. 1995;31:61–65. doi: 10.1016/1043-6618(95)80049-2. [PubMed] [CrossRef] [Google Scholar]
Davies NM, Roseth AG, Appleyard CB, McKnight W, Del Soldato P, Calignano A, Cirino G, Wallace JL. NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. Aliment Pharmacol Ther. 1997;11:69–79. doi: 10.1046/j.1365-2036.1997.115286000.x. [PubMed] [CrossRef] [Google Scholar]
Holm L, Phillipson M, Perry MA. NO-flurbiprofen maintains duodenal blood flow, enhances mucus secretion contributing to lower mucosal injury. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1090–G1097. [PubMed] [Google Scholar]
Mizoguchi H, Hase S, Tanaka A, Takeuchi K. Lack of small intestinal ulcerogenecity of nitric oxide-releasing indomethacin, NCX-530, in rats. Aliment Pharmacol Ther. 2001;15:257–267. doi: 10.1046/j.1365-2036.2001.00916.x. [PubMed] [CrossRef] [Google Scholar]
Hawkey CJ, Jones JI, Atherton CT, Skelly MM, Bebb JR, Fagerholm U, Jonzon B, Karlsson P, Bjarnason IT. Gastrointestinal safety of AZD a cyclooxygenase inhibiting nitric oxide donator: proof of concept study in humans. Gut. 3582;52:1537–1542. doi: 10.1136/gut.52.11.1537. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Lohmander LS, McKeith D, Svensson O, Malmenas M, Bolin L, Kalla A, Genti G, Szechinski J, Ramos-Remus C. A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis. Ann Rheum Dis. 2005;64:449–456. doi: 10.1136/ard.2004.023572. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Fiorucci S, Mencarelli A, Meneguzzi A, Lechi A, Renga B, del Soldato P, Morelli A, Minuz P. Co-administration of nitric oxide-aspirin (NCX-4016) and aspirin prevents platelet and monocyte activation and protects against gastric damage induced by aspirin in humans. J Am Coll Cardiol. 2004;44:635–641. doi: 10.1016/j.jacc.2004.03.079. [PubMed] [CrossRef] [Google Scholar]
Bressa, Carlo, et al. “Differences in Gut Microbiota Profile between Women with Active Lifestyle and Sedentary Women.” PloS One, vol. 12, no. 2, 2017, p. e0171352. PubMed, https://doi.org/10.1371/journal.pone.0171352.
Camilleri, Michael, et al. “Role for Diet in Normal Gut Barrier Function: Developing Guidance within the Framework of Food-Labeling Regulations.” American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 317, no. 1, American Physiological Society, July 2019, pp. G17–39. journals.physiology.org (Atypon), https://doi.org/10.1152/ajpgi.00063.2019.
Chen, Qianru, et al. “Collagen Peptides Ameliorate Intestinal Epithelial Barrier Dysfunction in Immunostimulatory Caco-2 Cell Monolayers via Enhancing Tight Junctions.” Food & Function, vol. 8, no. 3, Mar. 2017, pp. 1144–51. PubMed, https://doi.org/10.1039/c6fo01347c.
Clifford, Tom, et al. “The Potential Benefits of Red Beetroot Supplementation in Health and Disease.” Nutrients, vol. 7, no. 4, 4, Multidisciplinary Digital Publishing Institute, Apr. 2015, pp. 2801–22. www.mdpi.com, https://doi.org/10.3390/nu7042801.
Istas, Geoffrey, et al. “Effects of Aronia Berry (Poly)Phenols on Vascular Function and Gut Microbiota: A Double-Blind Randomized Controlled Trial in Adult Men.” The American Journal of Clinical Nutrition, vol. 110, no. 2, Aug. 2019, pp. 316–29. PubMed, https://doi.org/10.1093/ajcn/nqz075.
Le Bastard, Quentin, et al. “The Effects of Inulin on Gut Microbial Composition: A Systematic Review of Evidence from Human Studies.” European Journal of Clinical Microbiology & Infectious Diseases, vol. 39, no. 3, Mar. 2020, pp. 403–13. Springer Link, https://doi.org/10.1007/s10096-019-03721-w.
Lopetuso, L. R., et al. “The Therapeutic Management of Gut Barrier Leaking: The Emerging Role for Mucosal Barrier Protectors.” European Review for Medical and Pharmacological Sciences, vol. 19, no. 6, 2015, pp. 1068–76.
Munukka, Eveliina, et al. “Six-Week Endurance Exercise Alters Gut Metagenome That Is Not Reflected in Systemic Metabolism in Over-Weight Women.” Frontiers in Microbiology, vol. 9, 2018, p. 2323. Frontiers, https://doi.org/10.3389/fmicb.2018.02323.
Murphy, Emma J., et al. “β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application.” Journal of Fungi, vol. 6, no. 4, Dec. 2020. PubMed Central, https://doi.org/10.3390/jof6040356.
O’Toole, P. W., and P. G. Shiels. “The Role of the Microbiota in Sedentary Lifestyle Disorders and Ageing: Lessons from the Animal Kingdom.” Journal of Internal Medicine, vol. 287, no. 3, Mar. 2020, pp. 271–82. PubMed, https://doi.org/10.1111/joim.13021.
Paulrayer, Antonisamy, et al. “Aronia Melanocarpa (Black Chokeberry) Reduces Ethanol-Induced Gastric Damage via Regulation of HSP-70, NF-ΚB, and MCP-1 Signaling.” International Journal of Molecular Sciences, vol. 18, no. 6, 6, Multidisciplinary Digital Publishing Institute, June 2017, p. 1195. www.mdpi.com, https://doi.org/10.3390/ijms18061195.
Peterson, Christine T., et al. “Prebiotic Potential of Culinary Spices Used to Support Digestion and Bioabsorption.” Evidence-Based Complementary and Alternative Medicine : ECAM, vol. 2019, Hindawi Limited, 2019. www.ncbi.nlm.nih.gov, https://doi.org/10.1155/2019/8973704.
Rinninella, Emanuele, et al. “What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases.” Microorganisms, vol. 7, no. 1, Multidisciplinary Digital Publishing Institute (MDPI), Jan. 2019. www.ncbi.nlm.nih.gov, https://doi.org/10.3390/microorganisms7010014.
Ríos-Covián, David, et al. “Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health.” Frontiers in Microbiology, vol. 7, 2016, p. 185. PubMed, https://doi.org/10.3389/fmicb.2016.00185.
Rogler, Gerhard, and Giuseppe Rosano. “The Heart and the Gut.” European Heart Journal, vol. 35, no. 7, Feb. 2014, pp. 426–30. Silverchair, https://doi.org/10.1093/eurheartj/eht271.
Valcheva-Kuzmanova, Stefka, et al. “Aronia Melanocarpa Fruit Juice Ameliorates the Symptoms of Inflammatory Bowel Disease in TNBS-Induced Colitis in Rats.” Food and Chemical Toxicology, vol. 113, Mar. 2018, pp. 33–39. ScienceDirect, https://doi.org/10.1016/j.fct.2018.01.011.
Vitetta, Luis, et al. “The Gastrointestinal Microbiome and Musculoskeletal Diseases: A Beneficial Role for Probiotics and Prebiotics.” Pathogens, vol. 2, no. 4, Nov. 2013, pp. 606–26. PubMed Central, https://doi.org/10.3390/pathogens2040606.
Yamane, Takuya, et al. “Effectiveness of Aronia Berries for Reduction of Mild Fibrosis and Gene Expression Analysis in Livers from Mice Fed a High-Fat Diet with Aronia Berries.” Functional Foods in Health and Disease, vol. 6, no. 3, 3, Mar. 2016, pp. 144–57. ffhdj.com, https://doi.org/10.31989/ffhd.v6i3.245.
Zec, Manja, et al. “Effects of Juice on Plasma and Liver Phospholipid Fatty Acid Composition in Wistar Rats.” Acta Veterinaria, vol. 67, no. 1, Mar. 2017, pp. 107–20. www.sciendo.com, https://doi.org/10.1515/acve-2017-0010.
Zhang, Yu-Jie, et al. “Impacts of Gut Bacteria on Human Health and Diseases.” International Journal of Molecular Sciences, vol. 16, no. 4, Apr. 2015, pp. 7493–519. PubMed Central, https://doi.org/10.3390/ijms16047493.